Radical-Mediated Three-Component Coupling of Alkenes

by Arnaud Pierre Schaffner, Kandhasamy Sarkunam, and Philippe Renaud*

Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne (e-mail: philippe.renaud@ioc.unibe.ch)

Dedicated to the memory of Professor Hanns Fischer, whose pioneer contribution to radical chemistry remains a fantastic source of inspiration

A tandem radical process involving conjugate addition to an activated alkene followed by allylation is reported. *B*-Alkylcatecholboranes, easily available *via* hydroboration of the corresponding alkenes, were used to generate the initial radicals. These radicals add efficiently to electrophilic alkenes such as phenyl vinyl sulfone, *N*-phenylmaleimide, and dialkyl fumarate. In the last step of this one-pot process, the radical adducts react with the allylic sulfones. The whole process can be considered as a unique and selective coupling of three different alkenes.

Introduction. - The spectacular development of radical chemistry in organic synthesis over the last 20 years is tightly bound to tin (Sn)-based methods [1]. However, the use of trialkyltin derivatives, which are toxic and contaminate the products even after repeated purification by column chromatography, represents a strong limitation for their application in medicinal chemistry and for the production of compounds of therapeutic importance [2]. The development of radical chain reactions under Sn-free conditions represents one of the most-important challenges in radical chemistry to extend its scopes from a research tool to a production tool. Nowadays, different Sn-free strategies are developed [3]. Among them, the use of organoboranes as radical precursors has a privileged position for the generation of alkyl radicals [4]. Recently, we have shown that *B*-alkylcatecholboranes, easily prepared by hydroboration of olefins, are so far the most-reactive and useful boron-based radical precursors [5]. This approach had led to the development of several methods for C-X(X=H, O) and C-C bond formation. For instance, a radical allylation reaction with allyl sulfones as allylating agents has been reported, as exemplified in Scheme 1 [6] [7]. The scope of this reaction is remarkably wide due to the diversity of allyl sulfones available¹).

Radical conjugate addition–allylation processes are synthetically very useful procedures that are routinely achieved by Sn chemistry starting from halides, activated alkenes, and allylstannanes [10]. Related reactions with allylplumbanes are also known [11]. Radical addition to alkenes *via* transfer of a xanthate group, followed by allylation with allyl sulfones, has also been reported [12]. In this reaction, the two

¹) For a review on radical allylations with allylsulfones, see [8]. See also references cited in [6] and [9].

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

Scheme 1. Radical Allylation of B-Alkylcatecholboranes

steps have to be run consecutively. An interesting Sn-free process where alkyl allyl sulfones are used as radical precursors and allylating agents is also known [9].

Herein, we report a novel one-pot tandem process involving radicals generated from organoboranes, activated alkenes, and allyl sulfones. The whole process corresponds to a unique and selective coupling of three different alkenes.

Results. – The aim of this work was to achieve the three-component coupling reaction depicted in *Scheme 2*. Three different alkenes served as starting materials, and the whole sequence was achieved by hydroboration of alkene **1** with catecholborane (CatBH), followed by conjugate addition to the activated alkene **2**, and by allylation of the radical adduct with the allyl sulfone **3**. Such a process can only work if the reactivities of the activated alkene **2** and of the allylic sulfone **3** are different. This could be easily achieved by using an electrophilic alkene **2** ($A^1 - A^3 =$ electron-withdrawing groups) to trap the initial radical, and an allylic sulfone **3** substituted at position 2 by neutral or electron-donating groups ($R^4 = H$, alkyl) to allylate the radical adduct.

Scheme 2. Three-Component Coupling Reaction of Alkenes. Newly formed C-C bonds are marked bold.

The optimization of the process was carried out with a model reaction involving cyclohexene (1a), phenyl vinyl sulfone (2a), and allyl phenyl sulfone (3a), and the results are shown in the *Table*. In CH₂Cl₂ (*Entry 1*), the coupling product 4a was isolated in only 32% yield. Under these conditions, 3a was entirely consumed. Variation of the nature of the initiator and of the workup procedure had no significant effect on the yield of the reaction. Using an excess (1.5 equiv.) of the allyl sulfone 3a (*Entry 2*) gave rise to an increased yield (43%). When running the radical process in DMF at 100°, instead of CH₂Cl₂ at 25°, with a slight excess of 1a (1.1 equiv.) and 3a (1.6 equiv.), gave a cleaner reaction, and the desired product 4a was isolated as a single product in 68% yield (*Entry 3*). The excess of 3a was recovered unchanged at the end of the reaction.

	($ \begin{array}{c} 1. C. \\ A \\ 2. Cl \\ 1a \\ sc \\ c \\ c \\ sc \\ c \\ $	atBH cNMe ₂ (10 mol- H ₂ =CHSO ₂ Ph (2 H ₂ =CHCH ₂ SO ₂ olvent, initiator	%) 2a), Ph (3a), 4a	SO ₂ Ph	
Entry	Equivalents			Solvent	$T\left[^\circ ight]$	Yield of 4a
	1 a	2a	3 a			[%]
1 2 3	1 1 1.1	1 1 1	1 1.5 1.6	CH ₂ Cl ₂ CH ₂ Cl ₂ DMF	25 25 100	32 43 68

Table. Optimization of the Three-Component Coupling Reaction

The three-component reaction involving phenyl vinyl sulfone (2a) was next examined with different radicals generated from alkenes 1a-e and allyl sulfones 3a-c (*Scheme 3*). Good yields (68–82%) were obtained with secondary alkyl radicals generated from cyclohexenes (4a-c) and α -pinenes (4d-f). As expected, the less-nucleo-

Scheme 3. *Reactions with Phenyl Vinyl Sulfone* (2a)

philic primary alkyl radicals gave rise to slightly lower yields (4g-k; 61–71%). The substitution at C(2) of the allyl sulfone ($R^4 = H$, Me, CH₂Cl) did not strongly influence the yield of the reaction. The reaction with the chloromethyl-substituted sulfone ($R^4 = ClCH_2$) is remarkable in that it involves a selective β -fragmentation of a benzenesulfonyl group in the presence of a Cl-atom. This result fits with the reported rate of β -fragmentation of a 2-benzenesulfonylalkyl radical, which proceeds 6.8 times faster than that of the 2-chloroalkyl radical [13].

Other radical traps were also tested. Preparatively useful results were obtained with highly activated olefins such as *N*-phenylmaleimide (**2b**; *Scheme 4*) and dimethyl fumarate (**2c**; *Scheme 5*). With **2b**, all reactions were found to be *trans* stereoselective²), affording addition product **5** in moderate yields with secondary alkyl radicals (**5a**–**f**; 53-61%) and primary alkyl radicals (**5g**, 57%; **5h**, 48%). The formation of oligomers

²) For related diastereoselective additions to maleimide derivatives, see [9] and [14].

Scheme 5. *Reactions with Dimethyl Fumarate* (2c). The diethyl ester 2d was used instead of the dimethyl ester 2c for the preparation of 6d and 6h.

resulting from the addition of the radical adduct to another molecule of *N*-phenylmaleimide (**2b**) was detected by GC/MS analysis of the crude products and rationalizes the lower yields observed with this trap relative to the vinyl sulfone **2a**.

The reaction with dimethyl fumarate (2c) was investigated next. It was found to afford preferentially the *anti* isomer in moderate-to-good yields with secondary and primary alkyl radicals (*Scheme 5*)³). No oligomerization product was produced in this reaction. Attempts to run similar reactions with methyl acrylate afforded the addition–allylation product in low yield, together with a larger amount of oligomers.

Discussion. – The conjugate addition–allylation reaction follows the mechanism depicted in *Scheme 6*. The initial alkyl radical has a nucleophilic character and, thus, reacts rapidly with the electrophilic olefin **2** to afford the corresponding radical adduct. Allylation of this radical adduct finally provides the products 4-6, together with the benzenesulfonyl radical that can propagate the chain process by reaction with the *B*-

³) For stereoselective reactions with closely related systems, see [15].

Scheme 6. Proposed Mechanism of the Three-Component Coupling Reaction. Newly formed C-C bonds are marked bold.

alkylcatecholborane. Besides polar factors, a key element for the success of this radical process is that the radical adduct does not react with the alkylcatecholborane. Indeed, we have already established that radical adducts of this type $(A = CO_2R, SO_2Ar)$ do not react with *B*-alkylcatecholborane to afford the corresponding enolate $(A = CO_2R)$ or related species $(R = SO_2Ar)$.

Conclusions. – A method for radical addition to electron-deficient unsaturated compounds, followed by allylation of the resulting intermediate radical adducts, is reported. This method is general for highly activated radical traps such as vinyl sulfones, maleimides, and fumarates, and it compares well with the well-established allyl-tin-mediated conjugate addition–allylation process. Since the initial radical is generated from an organoboron species obtained by hydroboration of the corresponding alkenes, the whole process represents a one-pot coupling reaction of three different alkenes.

This work was supported by the *Swiss National Science Foundation* (No. 21-103627). S. K. is very grateful to the *State Secretariat for Education and Research (SER)* for a Swiss scholarship. We thank *BASF Corporation* for the generous gift of catecholborane.

Experimental Part

General. Catecholborane (CatBH) was distilled under reduced pressure (b.p. 50°/50 mbar). Other reagents were obtained from commercial sources and used as received. All glassware was oven-dried at 130°, assembled hot, and allowed to cool under vacuum. Flash column chromatography (FC) was car-

ried out on *SDS* silica gel (40–63 µm), with AcOEt, cyclohexane, pentane, and *t*-BuOMe as eluents. Thin-layer chromatography (TLC) was performed on *Merck* silica gel 60 F_{254} anal. plates; detection under UV light and/or by dipping in a soln. of KMnO₄ (3 g), K₂CO₃ (20 g), and 5% aq. NaOH (5 ml) in H₂O (300 ml). Melting points (m.p.) were determined in open capillaries on a *Büchi B-545* apparatus; uncorrected. IR Spectra: *Jasco FT/IR-400 plus* apparatus; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: *Bruker AC-300*, at 300 and 75 MHz, resp., in CDCl₃; chemical shifts δ in ppm rel. to residual CHCl₃ (δ (H) 7.26, δ (C) 77.0 ppm), coupling constants *J* in Hz. GC/MS: *Finnigan Trace GC/MS* apparatus fitted with an *Optima delta-3* (30 m). High-Resolution liquid-secondary-ion mass spectra (HR-LSI-MS): *Micromass AutospecQ*, with a Cs⁺ ion beam at 20 kV, using polyethylene glycol as internal standard; in *m/z*.

General Procedure for the Multicomponent Reaction. Catecholborane (0.42 ml, 4 mmol) was added dropwise at 0° to a soln. of the alkene **1** (2.0 mmol) and *N*,*N*-dimethylacetamide (20.0 μ l, 0.2 mmol) in CH₂Cl₂ (2 ml) under N₂ atmosphere, and the mixture was heated at reflux for 5 h. MeOH (0.08 ml, 2 mmol) was added at 0°, and the soln. was stirred for 5 min at r.t. Then, the solvent was removed by flushing with N₂. DMF (2 ml) was added to the residual *B*-alkylcatecholborane. The soln. was cooled to 0°, and the electron-deficient radical trap **2** (1.8 mmol) and the allyl sulfone **3** (3 mmol) were successively added in DMF (1 ml). The mixture was then heated at 100°, and air (180 ml, 1.5 mmol O₂) was introduced over 90 min through a needle placed just above the reaction surface. The progress of the reaction was monitored by GC/MS. At the end of the reaction, the soln. turned black. CH₂Cl₂ (50 ml) was added, and DMF was removed by washing with H₂O. The crude product was purified by FC.

[[1-(Cyclohexylmethyl)but-3-en-1-yl]sulfonyl]benzene (**4a**). Prepared from **1a** (0.164 g, 2.0 mmol), **2a** (0.302 g, 1.8 mmol), and **3a** (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 4:1). Yield: 0.357 g (68%). Colorless oil. ¹H-NMR: 7.87–7.91 (*m*, 2 H); 7.54–7.69 (*m*, 3 H); 5.67–5.81 (*m*, 1 H); 5.02–5.08 (*m*, 2 H); 3.03–3.13 (*m*, 1 H); 2.56–2.65 (*m*, 1 H); 2.24–2.34 (*m*, 1 H); 1.01–1.71 (*m*, 11 H); 0.64–0.89 (*m*, 2 H). ¹³C-NMR: 137.9; 133.6; 133.5; 129.1; 128.9; 118.3; 61.5; 34.9; 34.8; 33.4; 33.2; 32.5; 26.3; 26.1; 25.9. EI-MS: 292 (*M*⁺), 250, 185, 151, 109, 95, 83, 55, 41. HR-MS: 292.14954 (*M*⁺, C₁₇H₂₄O₂S⁺; calc. 292.14970).

[[1-(Cyclohexylmethyl)-3-methylbut-3-en-1-yl]sulfonyl]benzene (**4b**). Prepared from **1a** (0.164 g, 2 mmol), **2a** (0.302 g, 1.8 mmol), and **3b** (0.588 g, 3 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 4:1). Yield: 0.386 g (70%). Colorless oil. ¹H-NMR: 7.87–7.90 (m, 2 H); 7.56–7.65 (m, 3 H); 4.80 (br. s, 1 H); 4.71 (br. s, 1 H); 3.17–3.21 (m, 1 H); 2.59 (dd, J=13.9, 3.6, 1 H); 2.11 (dd, J=13.9, 9.8, 1 H); 1.55–1.74 (m, 9 H); 1.30–1.37 (m, 2 H); 1.07–1.14 (m, 3 H); 0.73–0.76 (m, 2 H). ¹³C-NMR: 140.6; 137.9; 133.6; 129.1; 129.0; 114.3; 59.7; 34.9; 34.8; 33.2; 32.9; 26.3; 26.1; 25.9; 221.7. EI-MS: 306 (M^+), 292, 264, 251, 164, 149, 121, 109, 95, 83, 55, 41. HR-MS: 306.16382 (M^+ , $C_{18}H_{26}O_2S^+$; calc. 306.16535).

[[3-(Chloromethyl)-1-(cyclohexylmethyl)but-3-enyl]sulfonyl]benzene (4c). Prepared from 1a (0.164 g, 2.0 mmol), 2a (0.302 g, 1.8 mmol), and 3c (0.690 g, 3.0 mmol); purified by FC (SiO₂ cyclohexane/t-BuOMe 4:1). Yield: 0.503 g (82%). Colorless oil. IR: 3067, 2921, 1645, 1303, 1142, 913, 688. ¹H-NMR: 7.87–7.90 (m, 2 H); 7.64–7.67 (m, 1 H); 7.54–7.59 (m, 2 H); 5.99 (br. s, 1 H); 4.99 (br. s, 1 H); 3.95–4.08 (m, 2 H); 3.25–3.34 (m, 1 H); 2.72 (dd, J=15.2, 5.5, 1 H); 2.35 (dd, J=15.2, 7.9, 1 H); 1.61–1.78 (m, 6 H); 1.31–1.38 (m, 2 H); 1.05–1.18 (m, 3 H); 0.71–0.85 (m, 2 H). ¹³C-NMR: 140.8; 137.6; 133.6; 129.0; 128.9; 117.9; 59.6; 47.3; 36.2; 34.7; 33.3; 33.2; 32.8; 26.2; 25.9; 25.8. EI-MS: 305 ([M – Cl]⁺), 198, 163, 143, 109, 95, 81, 55, 41. HR-MS: 305.1575 ([M – Cl]⁺, C₁₈H₂₅O₂S⁺; calc. 305.1575).

(1R,2S,3S,5R)-2,6,6-*Trimethyl-3-[2-(phenylsulfonyl)pent-4-en-1-yl]bicyclo[3.1.1]heptane* (4d). Prepared from **1b** (0.272 g, 2.0 mmol), **2a** (0.302 g, 1.8 mmol), and **3a** (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 4:1). Yield: 0.474 g (76%; dr 3:1)⁴). Colorless oil. ¹H-NMR: 7.81–7.87 (*m*, 2 H); 7.42–7.56 (*m*, 3 H); 5.59–5.79 (*m*, 1 H); 4.97–5.06 (*m*, 2 H); 2.98–3.07 (*m*, 1 H); 2.64–2.73 (*m*, 2 H); 2.32–2.59 (*m*, 2 H); 1.92–2.08 (*m*, 2 H); 1.63–1.76 (*m*, 3 H); 1.41–1.47 (*m*, 1 H); 1.06–1.17 (*m*, 4 H); 0.74–0.90 (*m*, 6 H); 0.61 (*d*, J=9.9, 1 H). ¹³C-NMR: 138.3; 137.8; 133.6; 133.5; 129.1; 128.9; 118.9; 61.7; 47.9; 43.9; 41.7; 38.7; 34.2; 34.0; 33.9; 33.4; 33.2; 32..5; 28.0; 22.9; 21.4. EI-MS: 347 (*M*⁺), 332, 292, 266, 238, 205, 150, 137, 107, 93, 83. HR-MS: 346.19620 (*M*⁺, C₂₁H₃₀O₂S⁺; 346.19665).

⁴⁾ The term 'dr' refers to diastereoisomer ratio.

(1R,2S,3S,5R)-2,6,6-*Trimethyl-3-[4-methyl-2-(phenylsulfonyl)pent-4-en-1-yl]bicyclo[3.1.1]heptane* (4e). Prepared from 1b (0.272 g, 2.0 mmol), 2a (0.302 g, 1.8 mmol), and 3b (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 4:1). Yield: 0.493 g (76%; dr 3:1). Colorless oil. IR: 3076, 2901, 1646, 1330, 1142, 894. ¹H-NMR (one isomer): 7.88–7.93 (*m*, 2 H); 7.63–7.65 (*m*, 1 H); 7.54–7.59 (*m*, 2 H); 4.73–4.87 (*m*, 2 H); 3.17–3.26 (*m*, 1 H); 2.65–2.74 (*m*, 1 H); 2.20–2.26 (*m*, 1 H); 2.01–2.08 (*m*, 2 H); 1.77–1.94 (*m*, 3 H); 1.70–1.74 (*m*, 1 H); 1.68 (br. *s*, 3 H); 1.31–1.47 (*m*, 3 H); 1.17–1.23 (*m*, 1 H); 1.14 (*s*, 3 H); 0.89 (*d*, J=8.3, 3 H); 0.63 (*s*, 3 H); 0.59 (*d*, J=9.4, 1 H). ¹³C-NMR: 140.4; 138.9; 133.8; 129.3; 129.2; 115.2; 60.3; 48.2; 44.2; 42.0; 39.0; 38.8; 38.6; 33.9; 33.1; 28.3; 27.1; 22.9; 21.9; 21.4. EI-MS: 360 (*M*⁺), 345, 219, 163, 107, 93, 81, 55, 41. HR-ES-TOF-MS: 383.2020 ([*M*+Na]⁺, C₂₂H₃₂NaO₂S⁺; calc. 383.2020).

(1R,2S,3S,5R)-3-[4-(Chloromethyl)-2-(phenylsulfonyl)pent-4-en-1-yl]-2,6,6-trimethylbicyclo[3.1.1]heptane (**4f**). Prepared from **1b** (0.272 g, 2.0 mmol), **2a** (0.302 g, 1.8 mmol), and **3c** (0.690 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 4:1): Yield: 0.561 g (79%; dr 3:1). Colorless oil. IR: 3071, 2901, 1643, 1303, 1142, 915, 689. ¹H-NMR: 7.87–7.90 (*m*, 2 H); 7.63–7.68 (*m*, 1 H); 7.54–7.59 (*m*, 2 H); 5.23 (br. *s*, 1 H); 4.99 (br. *s*, 1 H); 3.97 (*d*, J=6.4, 2 H); 3.25–3.29 (*m*, 1 H); 2.85 (*dd*, J=14.6, 3.9, 2 H); 2.19–2.23 (*m*, 2 H); 1.94–1.98 (*m*, 2 H); 1.79–1.85 (*m*, 2 H); 1.63–1.69 (*m*, 2 H); 1.36–1.40 (*m*, 2 H); 1.10 (*s*, 3 H); 0.93 (*d*, J=7.2, 3 H); 0.80 (*s*, 3 H); 0.53 (*d*, J=9.5, 1 H). ¹³C-NMR: 140.3; 138.2; 133.7; 129.1; 128.8; 118.5; 60.0; 47.9; 47.3; 43.9; 41.7; 39.4; 38.5; 34.3; 33.9; 33.8; 33.1; 28.0; 22.7; 21.2. EI-MS: 359 ([*M* – Cl]⁺), 252, 209, 163, 143, 93, 77, 55, 41. HR-MS: 359.2034 ([*M* – Cl]⁺, C₂₂H₃₁O₂S⁺; calc. 359.2044).

[(1-Prop-2-en-1-yldecyl)sulfonyl]benzene (**4h**). Prepared from **1d** (0.224 g, 2.0 mmol), **2a** (0.302 g, 1.8 mmol), and **3a** (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 9:1). Yield: 0.412 g (71%). Colorless oil. ¹H-NMR: 7.86–7.90 (m, 2 H); 7.55–7.65 (m, 3 H); 5.66–5.79 (m, 1 H); 5.01–5.08 (m, 2 H); 2.94–3.02 (m, 1 H); 2.54–2.64 (m, 1 H); 2.29–2.39 (m, 1 H); 1.76–1.88 (m, 1 H); 1.49–1.65 (m, 1 H); 1.20–1.45 (m, 14 H); 0.86 (t, J=7.2, 3 H). ¹³C-NMR: 138.1; 133.6; 133.5; 129.0; 128.9; 118.2; 64.1; 32.4; 31.8; 29.4; 29.2; 27.2; 26.6; 14.1. EI-MS: 322 (M^+), 250, 222, 180, 143, 111, 97, 83, 69, 57. HR-MS: 322.19653 (M^+ , $C_{19}H_{30}O_2S^+$; calc. 322.19665).

[[1-(2-Methylprop-2-en-1-yl)decyl]sulfonyl]benzene (**4i**). Prepared from **1d** (0.224 g, 2.0 mmol), **2a** (0.302 g, 1.8 mmol), and **3b** (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 4:1). Yield: 0.393 g (65%). Colorless oil. ¹H-NMR: 7.88–7.91 (*m*, 2 H); 7.52–7.66 (*m*, 3 H); 4.80 (br. *s*, 1 H); 4.72 (br. *s*, 1 H); 3.08–3.13 (*m*, 1 H); 2.58 (*dd*, J=14.3, 3.3, 1 H); 2.20 (*dd*, J=14.3, 9.9, 1 H); 1.77–1.83 (*m*, 1 H); 1.58–1.63 (*m*, 4 H); 1.20–1.45 (*m*, 14 H); 0.87 (*t*, J=7.2, 3 H). ¹³C-NMR: 140.7; 138.0; 133.6; 133.5; 129.1; 129.0; 114.0; 62.4; 37.0; 31.8; 29.5; 29.4; 29.2; 28.0; 26.9; 26.6; 22.6; 14.1. EI-MS: 336 (*M*⁺), 322, 281, 194, 143, 111, 97, 83, 69, 57. HR-MS: 336.21255 (*M*⁺, C₂₀H₃₂O₂S⁺; calc. 336.21230).

[[1-(2-Methylprop-2-en-1-yl]pentyl]sulfonyl]benzene (**4j**). Prepared from *B*-propylcatecholborane (0.324 g, 2.0 mmol), **2a** (0.302 g, 1.8 mmol), and **3b** (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohex-ane/t-BuOMe 4:1). Yield: 0.292 g (61%). Colorless oil. IR: 3082, 2956, 1647, 1302, 1143, 894. ¹H-NMR: 7.87–7.90 (m, 2 H); 7.63–7.65 (m, 1 H); 7.56–7.58 (m, 2 H); 4.80 (br. s, 1 H); 4.71 (br. s, 1 H); 3.05–3.13 (m, 1 H); 2.58 (dd, J=14.4, 3.6, 1 H); 2.14–2.19 (m, 1 H); 1.77–1.83 (m, 1 H); 1.62 (br. s, 3 H); 1.55–1.59 (m, 1 H); 1.33–1.39 (m, 2 H); 1.20–1.26 (m, 2 H); 0.83 (t, J=7.4, 3 H). ¹³C-NMR: 140.5; 137.9; 133.5; 129.0; 128.7; 113.9; 62.3; 36.9; 28.9; 27.6; 22.5; 21.6; 13.5. EI-MS: 265 ([M-1]⁺), 158, 143, 123, 81, 77, 41. HR-ESI-TOF-MS: 267.1418 ([M+H]⁺, C₁₅H₂₃O₂S⁺; calc. 267.1418).

([1-[2-(Chloromethyl)prop-2-en-1-yl]pentyl]sulfonyl)benzene (4k). From *B*-propylcatecholborane (0.324 g, 2.0 mmol), **2a** (0.302 g, 1.8 mmol), and **3c** (0.690 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 4:1). Yield: 0.341 g (63%). Colorless oil. IR: 3064, 2956, 1640, 1301, 1142, 914, 668. ¹H-NMR: 7.87–7.90 (*m*, 2 H); 7.64–7.66 (*m*, 1 H); 7.54–7.59 (*m*, 2 H); 5.21 (br. *s*, 1 H); 5.0 (br. *s*, 1 H); 4.01 (*dd*, J=20.8, 12.1, 1 H); 3.15–3.21 (*m*, 1 H); 2.70 (*dd*, J=15.3, 5.1, 1 H); 2.41 (*dd*, J=15.3, 8.6, 1 H); 1.50–1.54 (*m*, 1 H); 1.40–1.43 (*m*, 1 H); 1.36–1.38 (*m*, 2 H); 1.21–1.26 (*m*, 2 H); 0.84 (*t*, J=7.2, 3 H). ¹³C-NMR: 140.8; 137.8; 133.7; 129.1; 128.9; 117.9; 62.2; 47.4; 32.5; 28.9; 28.0; 22.5; 13.6. EI-MS: 265 ($[M - Cl]^+$), 158, 143, 123, 81, 77, 41. HR-MS: 265.1260 ($[M - Cl]^+$, $C_{15}H_{21}O_2S^+$; calc. 265.1262).

(3RS,4RS)-3-*Cyclohexyl-1-phenyl-4-(prop-2-en-1-yl)pyrolidine-2,5-dione* (**5a**). Prepared from **1a** (0.164 g, 2.0 mmol), **2b** (0.311 g, 1.8 mmol), and **3a** (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 7:3). Yield: 0.299 g (56%). Colorless powder. M.p. 81–82°. IR: 3093, 2920, 1698, 1641, 911. ¹H-NMR: 7.43–7.47 (*m*, 2 H); 7.37–7.41 (*m*, 1 H); 7.23–7.26 (*m*, 2 H); 5.70–5.79 (*m*, 1 H); 5.17–5.23 (*m*, 2 H); 2.81–2.86 (*m*, 1 H); 2.67 (*dd*, *J*=3.8, 3.8, 1 H); 2.57–2.59 (*m*, 2 H); 1.98–2.03 (*m*, 1 H); 1.71–1.83 (*m*, 5 H); 1.08–1.27 (*m*, 5 H). ¹³C-NMR: 178.1; 177.9; 132.9; 131.9; 129.1; 128.5; 126.5; 119.6; 50.2; 42.5; 39.8; 36.1; 30.4; 28.5; 26.3; 26.1; 26.0. EI-MS: 297 (*M*⁺), 215, 174, 119, 77, 55, 41. HR-MS: 297.17288 (*M*⁺, C₁₉H₂₃NO₂⁺; calc. 297.17255).

(3RS,4RS)-3-*Cyclohexyl*-4-(2-*methylprop*-2-*en*-1-*yl*)-1-*phenylpyrolidine*-2,5-*dione* (**5b**). Prepared from **1a** (0.164 g, 2.0 mmol), **2b** (0.311 g, 1.8 mmol), and **3b** (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 7:3). Yield: 0.319 g (57%). Colorless powder. M.p. 116–117°. IR: 3060, 2911, 1698, 1652, 911. ¹H-NMR: 7.40–7.44 (*m*, 2 H); 7.35–7.38 (*m*, 1 H); 7.24–2.27 (*m*, 2 H); 4.91–4.92 (*m*, 1 H); 4.80–4.81 (*m*, 1 H); 2.82–2.86 (*m*, 1 H); 2.68 (*dd*, J=3.7, 3.6, 1 H); 2.61 (br. *dd*, J=13.1, 4.8, 1 H); 2.40 (*ddd*, J=13.7, 8.8, 0.6, 1 H); 1.89–1.98 (*m*, 1 H); 1.77 (br. *s*, 3 H); 1.59–1.81 (*m*, 5 H); 1.02–1.35 (*m*, 5 H). ¹³C-NMR: 178.6; 178.0; 141.2; 132.0; 129.1; 128.5; 126.4; 115.0; 50.1; 41.6; 40.5; 40.1; 29.9; 28.8; 26.3; 26.1; 25.9; 22.2. EI-MS: 311 (*M*⁺), 256, 229, 174, 77, 55, 41. HR-MS: 311.18852 (*M*⁺, C₂₀H₂₅NO₂⁺; calc. 311.18845).

(3RS,4RS)-3-[2-(Chloromethyl)prop-2-en-1-yl]-4-cyclohexyl-1-phenylpyrrolidine-2,5-dione (5c). Prepared from **1a** (0.164 g, 2.0 mmol), **2b** (0.311 g, 1.8 mmol), and **3c** (0.690 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.367 g (59%). Colorless crystalline solid. M.p 114–115°. IR: 3098, 2924, 1701, 1648, 939, 671. ¹H-NMR: 7.40–7.45 (m, 2 H); 7.35–7.38 (m, 1 H); 7.24–7.28 (m, 2 H); 5.31 (br. s, 1 H); 5.09 (br. s, 1 H); 4.12 (ddd, J=12, 0.9, 2 H); 2.90–2.94 (m, 1 H); 2.60–2.68 (m, 3 H); 1.94–1.99 (m, 1 H); 1.71–1.83 (m, 5 H); 1.20–1.33 (m, 5 H). ¹³C-NMR: 177.8; 177.5; 141.2; 131.8; 129.1; 128.5; 126.4; 118.5; 51.2; 47.6; 41.5; 40.0; 36.0; 30.0; 28.8; 26.3; 26.1; 25.9. EI-MS: 345 (M^+), 310, 228, 174, 81, 77, 67, 55, 41. HR-MS: 345.14955 (M^+ , C₂₀H₂₄CINO⁺₂; calc. 345.14893).

*1-Phenyl-3-(prop-2-en-1-yl)-4-[(1*R,2S,3R,5R)*-2,6,6-trimethylbicyclo[3.1.1]hept-3-yl]pyrrolidine-2,5-dione* (5d). Prepared from 1b (0.272 g, 2.0 mmol), 2b (0.311 g, 1.8 mmol), and 3a (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 7:3). Yield: 0.335 g (53%; dr 1:1). Colorless oil. IR: 3095, 2903, 1706, 1646, 689. ¹H-NMR (one isomer): 7.43–7.47 (*m*, 2 H); 7.38–7.44 (*m*, 1 H); 7.23–7.27 (*m*, 2 H); 5.71–5.84 (*m*, 1 H); 5.18–5.25 (*m*, 2 H), 2.83–2.97 (*m*, 2 H); 2.57–2.65 (*m*, 2 H); 2.36–2.44 (*m*, 2 H); 2.05–2.11 (*m*, 1 H); 1.92–1.96 (*m*, 1 H); 1.77–1.83 (*m*, 2 H); 1.27–1.33 (*m*, 1 H); 1.22 (*s*, 3 H); 1.09 (*d*, J=7.0, 3 H); 1.05 (*s*, 3 H); 0.75 (*d*, J=9.9, 1 H). ¹³C-NMR (two diastereoisomers): 178.5; 178.0; 177.9; 133.0; 132.9; 132.0; 131.9; 129.1; 128.6; 128.5; 126.5; 126.4; 119.7; 119.6; 48.6; 47.9; 47.7; 47.6; 43.9; 42.7; 41.3; 41.2; 39.9; 39.4; 39.3; 38.9; 38.6; 38.4; 36.6; 35.7; 34.4; 32.9; 31.1; 29.0; 28.3; 28.2; 23.0; 22.7; 21.3; 20.6. EI-MS: 351 (M^+), 215, 174, 136, 77, 55, 41. HR-MS: 351.21982 (M^+ , $C_{23}H_{29}NO_2^+$; calc. 351.21945).

3-(2-Methylprop-2-en-1-yl)-1-phenyl-4-[(1R,2S,3R,5R)-2,6,6-trimethylbicyclo[3.1.1]hept-3-yl]pyrrolidine-2,5-dione (**5e**). Prepared from **1b** (0.272 g, 2.0 mmol), **2b** (0.311 g, 1.8 mmol), and **3b** (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.335 g (54%; dr 1:1). Colorless oil. IR: 1390, 2904, 1705, 1657, 896. ¹H-NMR (one isomer): 7.40–7.44 (m, 2 H); 7.31–7.35 (m, 1 H); 7.24–7.28 (m, 2 H); 4.80–4.89 (m, 2 H); 2.80–2.92 (m, 2 H); 2.56–2.64 (m, 1 H); 2.44–2.50 (m, 1 H); 2.33–2.39 (m, 1 H); 2.10–2.26 (m, 2 H); 1.89–1.93 (m, 1 H); 1.76 (d, J=5.9, 3 H); 1.73–1.75 (m, 1 H); 1.35–1.47 (m, 2 H); 1.19 (s, 3 H); 1.04 (d, J=11.1, 3 H), 1.0 (s, 3 H); 0.70 (d, J=10.0, 1 H). ¹³C-NMR (two diastereoisomers): 178.8; 178.6; 178.3; 178.0; 141.1; 141.1; 131.9; 131.9; 129.1; 129.1; 128.5; 128.4; 126.4; 126.3; 115.3; 115.0; 48.8; 48.0; 47.9; 47.7; 42.4; 41.7; 41.2; 40.8; 40.1; 39.8; 39.4; 39.3; 39.1; 38.6; 38.4; 34.4; 32.8; 30.7; 28.9; 28.3; 28.2; 26.8; 22.9; 22.7; 22.2; 21.8; 21.1; 20.7. EI-MS: 365 (M^+), 229, 174, 136, 93, 77, 55, 41. HR-MS: 365.23548 (M^+ , C₂₄H₃₁NO₂⁺; calc. 365.23560).

3-[2-(Chloromethyl)prop-2-en-1-yl]-1-phenyl-4-[(1R,2S,3R,5R)-2,6,6-trimethylbicyclo[3.1.1]hept-3yl]pyrrolidine-2,5-dione (**5f**). Prepared from **1b** (0.272 g, 2.0 mmol), **2b** (0.311 g, 1.8 mmol), and **3c** (0.690 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.439 g (61%; dr 1:1). Colorless oil. IR: 3091, 2904, 1704, 1650, 909, 690. ¹H-NMR (one isomer): 7.44–7.49 (m, 2 H); 7.35–7.38 (m, 1 H); 7.24–7.27 (m, 2 H); 5.17 (br. *s*, 1 H); 5.12 (br. *s*, 1 H); 4.11–4.17 (m, 2 H); 2.97–3.03 (m, 1 H); 2.84–2.89 (m, 1 H); 2.69–2.73 (m, 1 H); 2.56–2.61 (m, 1 H); 2.31–2.41 (m, 3 H); 1.94–1.98 (m, 1 H); 1.78–1.83 (m, 1 H); 1.48–1.52 (m, 2 H); 1.22 (s, 3 H); 1.09 (d, J=7.0, 3 H); 1.03 (s, 3 H); 0.77(d, J=10.0, 1 H). ¹³C-NMR (two diastereoisomers): 178.1; 177.9; 177.6; 141.1; 131.9; 131.8; 129.1; 128.6; 128.5; 126.4; 126.3; 118.7; 118.6; 53.4; 49.3; 48.7; 47.9; 47.7; 47.5; 47.4; 42.5; 41.5; 41.3; 41.2; 39.9; 39.4; 39.3; 39.0; 38.6; 38.4; 36.4; 35.7; 34.4; 32.8; 30.7; 29.0; 28.3; 28.2; 26.8; 22.9; 22.7; 21.1; 20.7. EI-MS: 364 ([M – CI]⁺), 228, 174, 136, 91, 77, 55, 41. HR-MS: 399.19650 (M^+ , C₂₄H₃₀CINO⁺₂; calc. 399.19608).

3-[2-(Chloromethyl)prop-2-en-1-yl]-4-[[(1\$,2\$,5\$)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]methyl]-1phenylpyrrolidine-2,5-dione (**5g**). Prepared from **1e** (0.272 g, 2.0 mmol), **2b** (0.311 g, 1.8 mmol), and **3c** (0.690 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.410 g (57%; dr 49:44:4:3). Colorless oil. IR: 3090, 2907, 1705, 1654, 908, 689. ¹H-NMR: (one isomer) 7.44–7.49 (m, 2 H); 7.38–7.41 (m, 1 H); 7.24–7.27 (m, 2 H); 5.33 (br. s, 1 H); 5.11 (br. s, 1 H); 4.09–4.12 (m, 2 H); 2.72–2.86 (m, 4 H); 2.31–2.37 (m, 2 H); 1.85–2.0 (m, 6 H); 1.51–1.55 (m, 2 H); 1.19 (s, 3 H); 1.03 (s, 3 H); 0.89–0.92 (m, 1 H). ¹³C-NMR: 178.4; 177.5; 141.2; 131.9; 129.1; 128.5; 126.3; 118.3; 47.5; 46.4; 44.8; 43.7; 41.4; 39.8; 38.7; 38.2; 35.4; 33.6; 28.1; 26.3; 23.2; 22.4. EI-MS: 399 (M^+), 364, 310, 228, 174, 137, 77, 41. HR-MS: 399.19635 ($C_{24}H_{30}CINO_{2}^+$; calc. 399.19650).

(3RS,4RS)-*1-Phenyl-3-(prop-2-en-1-yl)*-4-*propylpyrrolidine-2,5-dione* (**5h**). Prepared from *B*-propylcatecholborane (0.324 g, 2.0 mmol), **2b** (0.311 g, 1.8 mmol), and **3a** (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.222 g (48%). Colorless powder. M.p. 80–81°. IR: 3068, 2930, 1697, 927. ¹H-NMR: 7.29–7.41 (*m*, 3 H); 7.24–7.28 (*m*, 2 H); 5.71–5.84 (*m*, 1 H); 5.17–5.23 (*m*, 2 H); 2.71–3.78 (*m*, 2 H); 2.60–2.63 (*m*, 2 H); 1.87–1.95 (*m*, 1 H); 1.69–1.73 (*m*, 1 H); 1.48–1.52 (*m*, 2 H); 1.0 (*t*, *J*=7.3, 3 H). ¹³C-NMR: 178.4; 177.8; 133.0; 131.9; 129.1; 128.5; 126.4; 119.5; 45.5; 44.4; 35.4; 33.5; 19.9; 13.9. EI-MS: 257 (*M*⁺), 215, 174, 125, 81, 77, 67, 41. HR-MS: 257.14157 (*M*⁺, C₁₆H₁₉NO₂⁺; calc. 257.14157).

Dimethyl (2R\$,3SR)-2-*Cyclohexyl-3-(prop-2-en-1-yl)butanedioate* (**6a**). Prepared from **1a** (0.164 g, 2.0 mmol), **2c** (0.259 g, 1.8 mmol), and **3a** (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 7:3). Yield: 0.290 g (61%). Colorless powder. M.p. $38-39^{\circ}$. ¹H-NMR: 5.66–5.73 (*m*, 1 H); 4.97–5.05 (*m*, 2 H); 3.67 (br. *s*, 6 H); 2.91 (*dt*, J=4.1, 10.0, 1 H); 2.62 (*dd*, J=10.0, 5.8, 1 H); 2.19–2.30 (*m*, 2 H); 1.65–1.75 (*m*, 5 H); 1.42–1.46 (*m*, 1 H); 1.07–1.19 (*m*, 5 H). ¹³C-NMR: 174.3; 173.4; 134.8; 116.9; 53.1; 51.5; 51.2; 45.3; 38.7; 34.7; 31.5; 29.0; 26.5; 26.3; 26.2. EI-MS: 268 (*M*⁺), 237, 177, 155, 113, 95, 81, 67, 55. HR-MS: 268.16751 (*M*⁺, C₁₅H₂₄O⁴₄; calc. 268.16746).

Dimethyl (2RS,3SR)-2-*Cyclohexyl-3*-(2-*methylprop*-2-*en*-1-*yl*)*butanedioate* (**6b**). Prepared from **1a** (0.164 g, 2.0 mmol), **2c** (0.259 g, 1.8 mmol), and **3b** (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohex-ane/*t*-BuOMe 7:3). Yield: 0.203 g (72%). Colorless powder. M.p. 79–80°. IR: 3015, 2923, 1718, 1649, 916. ¹H-NMR: 4.71 (*s*, 1 H); 4.67 (*s*, 1 H); 3.67 (*s*, 3 H); 3.65 (*s*, 3 H); 3.02–3.07 (*m*, 1 H); 2.61 (*dd*, J=9.8, 5.7, 1 H); 2.32 (*dd*, J=13.8, 11.5, 1 H); 2.05 (*dd*, J=13.8, 3.4, 1 H); 1.63–1.75 (*m*, 8 H); 1.42–1.47 (*m*, 1 H); 0.95–1.19 (*m*, 5 H). ¹³C-NMR: 174.4; 173.4; 142.6; 112.2; 53.6; 51.4; 51.2; 44.3; 38.9; 38.8; 31.6; 29.0; 26.5; 26.4; 26.2; 22. EI-MS: 282 (M^+), 250, 222, 156, 95, 81, 55, 41. HR-MS: 282.18311(M^+ , C₁₆H₂₆O₄⁺; calc. 282.18314).

Dimethyl (2RS,3SR)-2-[2-(*Chloromethyl*)*prop*-2-*en*-1-*yl*]-3-*cyclohexylbutanedioate* (**6c**). Prepared from **1a** (0.164 g, 2.0 mmol), **2c** (0.259 g, 1.8 mmol), and **3c** (0.690 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.387 g (68%). Colorless crystalline solid. M.p. 42–43°. IR: 2925, 1719, 1645, 916, 749. ¹H-NMR: 5.13 (*s*, 1 H); 4.96 (*s*, 1 H); 4.03 (*dd*, J=23.5, 11.8, 2 H); 3.68 (*s*, 3 H); 3.65 (*s*, 3 H); 2.91 (*dt*, J=9.9, 5.0, 1 H); 2.62 (*dd*, J=9.9, 6.0, 1 H); 2.36–2.46 (*m*, 2 H); 1.63–1.75 (*m*, 5 H); 1.42–1.48 (*m*, 1 H); 0.96–1.20 (*m*, 5 H). ¹³C-NMR: 174.1; 173.1; 142.3; 116.4; 53.6; 51.6; 51.3; 47.4; 44.1; 38.7; 33.8; 31.5; 29.2; 26.4; 26.3; 26.2. EI-MS: 316 ([M – Cl]⁺), 249, 202, 156, 113, 79, 55, 41. HR-MS: 281.17499 ([M – Cl]⁺, C₁₆H₂₅O₄⁺; calc. 281.17529).

Dimethyl 2-(*Prop-2-en-1-yl*)-3-[(*I*R,2S,3R,5R)-2,6,6-*trimethylbicyclo*[3.1.1]*hept-3-yl*]*butanedioate* (6d). Prepared from **1b** (0.272 g, 2.0 mmol), **2d** (0.309 g, 1.8 mmol), and **3a** (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 7:3). Yield: 0.354 g (61%; *anti/syn* 97:3, dr 1:1). Colorless oil. ¹H-NMR (one isomer): 5.68–5.74 (*m*, 1 H); 4.97–5.05 (*m*, 2 H); 4.12–4.15 (*m*, 4 H); 2.73–2.88 (*m*, 2 H); 1.68–2.36 (*m*, 9 H); 1.21–1.31 (*m*, 6 H); 1.16 (*s*, 3 H); 0.94–1.03 (*m*, 6 H); 0.61 (*d*, *J*=9.9, 1 H). ¹³C-NMR: 173.9; 173.8; 173.2; 172.8; 135.2; 134.8; 116.9; 116.8; 60.4; 60.2; 55.2; 51.8; 48.8; 47.6; 46.3; 46.1; 41.4; 41.3; 39.7; 38.6; 38.3; 37.5; 36.5; 35.3; 34.3; 33.3; 32.6; 28.1; 27.7; 27.6; 23.2; 22.8; 22.7; 20.9; 14.4; 14.3; 14.2. EI-MS: 350 (*M*⁺), 305, 276, 263, 223, 173, 127, 93, 81, 67, 55. HR-MS: 350.24591 (*M*⁺, C₂₁H₃₄O₄⁺; calc. 350.24571).

Dimethyl 2-(2-*Methylprop*-2-*en*-1-*y*l)-3-[(1R,2S,3R,5R)-2,6,6-*trimethylbicyclo*[3.1.1]*hept*-3-*y*l]*buta-nedioate* (**6e**). Prepared from **1b** (0.272 g, 2.0 mmol), **2c** (0.259 g, 1.8 mmol), and **3b** (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 7:3). Yield: 0.405 g (67%; *anti/syn* 97:3, dr 1:1). Colorless oil. IR: 3090, 2948, 1727, 1652, 893. ¹H-NMR: 4.72 (*s*, 1 H); 4.68 (*s*, 1 H); 3.69 (*s*, 3 H); 3.66 (*s*, 3 H); 3.06–3.14 (*m*, 1 H); 2.82 (*dd*, J=10.8, 3.8, 1 H); 2.21–2.31 (*m*, 2 H); 1.97–2.07 (*m*, 3 H); 1.85–1.91 (*m*, 3 H); 1.72 (br. *s*, 3 H); 1.54 (br. *s*, 2 H); 1.17 (*s*, 3 H); 0.97 (*d*, J=6.7, 3 H); 0.95 (*s*, 3 H); 0.48 (*d*, J=9.7, 1 H). ¹³C-NMR: 174.4; 173.3; 142.6; 112.3; 52.4; 51.4; 51.2; 47.6; 45.4; 41.4; 39.8; 39.7; 38.8; 37.8; 33.4; 28.1; 27.6; 22.9; 22.0; 20.8. EI-MS: 305 ([M – 2 Me]⁺), 249, 209, 200, 168, 145, 93, 81, 67, 55, 41. HR-ESI-TOF-MS: 359.2198 ([M+Na]⁺, C₂₀H₃₂NaO⁴₄; calc. 359.2198).

*Dimethyl 2-[2-(Chloromethyl)prop-2-en-1-yl]-3-[(1*R,2S,3R,5R)-2,6,6-*trimethylbicyclo[3.1.1]hept-3-yl]butanedioate* (**6f**). Prepared from **1b** (0.272 g, 2.0 mmol), **2c** (0.259 g, 1.8 mmol), and **3c** (0.690 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 7:3). Yield: 0.420 g (63%; *anti/syn* 97:3, dr 1:1). Colorless oil. ¹H-NMR: 5.14 (br. *s*, 1 H); 4.97 (br. *s*, 1 H); 4.0–4.08 (*m*, 2 H); 3.69 (*s*, 3 H); 3.66 (*s*, 3 H); 3.06–3.12 (*m*, 1 H); 2.83 (*dd*, *J*=10.8, 4.0, 1 H); 2.38–2.42 (*m*, 2 H); 2.19–2.25 (*m*, 1 H); 1.99–2.07 (*m*, 2 H); 1.76–1.84 (*m*, 3 H); 1.71–1.75 (*m*, 1 H); 1.17 (*s*, 3 H); 1.0 (*d*, *J*=6.8, 3 H); 0.94 (*s*, 3 H); 0.47 (*d*, *J*=9.7, 1 H). ¹³C-NMR: 174.1; 172.9; 142.3; 116.4; 52.4; 51.6; 51.4; 47.6; 47.4; 45.2; 41.3; 39.7; 38.8; 37.8; 34.8; 33.4; 28.1; 27.6; 22.9; 20.8. EI-MS: 335 ([*M* – Cl]⁺), 249, 209, 145, 93, 55, 41. HR-ESI-TOF-MS: 371.1989 ([*M*+H]⁺, C₂₀H₃₂ClO⁴₄; calc. 371.1989).

Dimethyl 2-*[[*(IS,2S,5S)-6,6-*Dimethylbicyclo[3.1.1]hept-2-yl]methyl]-3-(2-methylprop-2-en-1-yl)butanedioate* (**6g**). Prepared from **1e** (0.272 g, 2.0 mmol), **2c** (0.259 g, 1.8 mmol), and **3b** (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.369 g (61%; *anti/syn* 95:5, dr 1:1). Colorless oil. IR: 3088, 2909, 1732, 1642, 893. ¹H-NMR: 4.73 (*s*, 1 H); 4.67 (*s*, 1 H); 3.68 (*s*, 3 H); 3.65 (*s*, 3 H); 2.81–2.87 (*m*, 1 H); 2.67–2.73 (*m*, 1 H); 2.27–2.35 (*m*, 3 H); 1.83–2.01 (*m*, 4 H); 1.70 (br. *s*, 3 H); 1.45–1.49 (*m*, 2 H); 1.35–1.39 (*m*, 2 H); 1.17 (*s*, 3 H); 0.94 (*s*, 3 H); 0.77–0.81 (*m*, 1 H). ¹³C-NMR: 174.9; 173.9; 142.4; 112.5; 51.5; 47.3; 46.4; 44.3; 41.4; 39.3; 39.1; 38.7; 37.8; 33.7; 28.1; 26.3; 23.0; 22.7; 21.9; 21.2. EI-MS: 336 (*M*⁺), 240, 200, 133, 91, 81, 67, 41. HR-ESI-TOF-MS: 337.2378 ([*M*+H]⁺, C₂₀H₃₃-O₄⁺; calc. 337.2378).

Dimethyl (2RS,3SR)-2-*Octyl-3-prop-2-en-1-ylbutanedioate* (**6h**). Prepared from **1d** (0.224 g, 2.0 mmol), **2d** (0.309 g, 1.8 mmol), and **3a** (0.546 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/*t*-BuOMe 7:3). Yield: 0.300 g (56%). Colorless oil. ¹H-NMR (major isomers): 5.63–5.69 (*m*, 1 H); 4.96–5.01 (*m*, 2 H); 4.07–4.16 (*m*, 4 H); 2.56–2.68 (*m*, 2 H); 2.16–2.31 (*m*, 2 H); 1.55–1.59 (*m*, 1 H); 1.21–1.39 (*m*, 19 H); 0.82–0.93 (*m*, 3 H). ¹³C-NMR: 174.0; 173.4; 134.7; 117.0; 60.3; 48.4; 34.9; 31.7; 30.5; 29.3; 29.1; 27.1; 22.6; 14.2. EI-MS: 326 (M^+), 281, 253, 207, 200, 127, 95, 67, 55, 43. HR-MS: 226.24567 (M^+ , C₁₉H₃₄O₄⁴; calc. 226.24571).

Dimethyl (2RS,3SR)-2-(2-*Methylprop*-2-*en*-1-*yl*)-3-*propylbutanedioate* (**6**). Prepared from *B*-propylcatecholborane (0.324 g, 2.0 mmol), **2c** (0.309 g, 1.8 mmol), and **3b** (0.588 g, 3.0 mmol); purified by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.252 g (58%). Colorless oil. ¹H-NMR (major isomers): 4.72 (*s*, 1 H); 4.67 (*s*, 1 H); 3.68 (*s*, 3 H); 3.65 (*s*, 3 H); 2.91 (*dt*, J=10.0, 4.5, 1 H); 2.63 (*dt*, J=10.0, 3.0, 1 H), 2.33 (*dd*, J=13.7, 10.5, 1 H); 2.05 (*dd*, J=13.7, 4.3, 1 H); 1.70 (br. *s*, 3 H); 1.55–1.65 (*m*, 1 H); 1.19–1.33 (*m*, 3 H); 0.87 (*t*, J=7.2, 3 H). ¹³C-NMR: 174.6; 174.1; 142.3; 112.4; 51.5; 51.43; 47.8; 46.8; 39.1; 32.7; 21.9; 20.5; 13.7. EI-MS: 242 (M^+), 210, 182, 151, 127, 87, 81, 55, 41. HR-MS: 242.1559 (M^+ , C₁₃H₂₂O₄⁴; calc. 242.1518).

Dimethyl (2R\$,3SR)-2-[2-(*Chloromethyl*)prop-2-en-1-yl]-3-propylbutanedioate (**6**j). Prepared from *B*-propylcatecholborane (0.324 g, 2.0 mmol), **2c** (0.309 g, 1.8 mmol), and **3c** (0.690g, 3.0 mmol); purified

by FC (SiO₂; cyclohexane/t-BuOMe 7:3). Yield: 0.293 g (59%). Colorless oil. IR: 3095, 2955, 1730, 1643, 913, 749. ¹H-NMR: 5.14 (br. s, 1 H); 4.97 (br. s, 1 H); 4.06 (*ddd*, J = 21.1, 12.0, 0.8, 2 H); 3.71 (s, 3 H); 3.65 (s, 3 H); 2.87 - 2.95 (m, 1 H); 2.65 (*dt*, J = 6.8, 6.6, 1 H), 2.31 - 2.49 (m, 2 H); 1.60 - 1.64 (m, 1 H); 1.21 - 1.42 (m, 3 H); 0.86 (t, J = 7.6, 3 H). ¹³C-NMR: 174.2; 173.7; 142.1; 116.6; 51.6; 47.9; 47.4; 46.6; 34.2; 32.6; 20.5; 13.8. EI-MS: 241([M - Cl]⁺); 209, 185, 149, 121, 87, 55, 41. HR-MS: 241.1439 ([M - Cl]⁺, C₁₃H₂₁O₄⁺; calc. 241.1439).

REFERENCES

- B. Giese, 'Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds', Pergamon Press, Oxford, 1988; D. P. Curran, in 'Comprehensive Organic Synthesis', Eds. B. M. Trost, I. Fleming, M. F. Semmelhack, Pergamon Press, Oxford, 1991, Vol. 4, pp. 715, 779; W. B. Motherwell, D. Crich, 'Free Radical Chain Reactions in Organic Synthesis', Academic Press, London, 1992; J. Fossey, D. Lefort, J. Sorba, 'Free Radicals in Organic Synthesis', J. Wiley & Sons, Chichester, 1995; 'Radicals in Organic Synthesis', Eds. P. Renaud, M. P. Sibi, Wiley-VCH, Weinheim, 2001; S. Z. Zard, 'Radical Reactions in Organic Synthesis', Oxford University Press, Oxford, 2003; A. F. Parsons, 'Free Radical Chemistry', Blackwell, Oxford, 2000.
- [2] K. E. Appel, Drug Metab. Rev. 2004, 36, 763.
- [3] P. A. Baguley, J. C. Walton, Angew. Chem., Int. Ed. 1998, 37, 3073; A. Studer, S. Amrein, Synthesis 2002, 835.
- [4] C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415; V. Darmency, P. Renaud, Top. Curr. Chem. 2006, 263, 71.
- [5] A. P. Schaffner, P. Renaud, Eur. J. Org. Chem. 2004, 2291; A. P. Schaffner, B. Becattini, C. Ollivier, V. Weber, P. Renaud, Synthesis 2003, 2740.
- [6] A. P. Schaffner, P. Renaud, Angew. Chem., Int. Ed. 2003, 42, 2658.
- [7] V. Darmency, P. Renaud, Chimia 2005, 59, 109; V. Darmency, E. M. Scanlan, A. P. Schaffner, P. Renaud, Org. Synth. 2005, 83, 24.
- [8] F. Bertrand, F. Le Guyader, L. Liguori, G. Ouvry, B. Quiclet-Sire, S. Seguin, S. Z. Zard, C. R. Acad. Sci., Ser. IIc 2001, 4, 547.
- [9] B. Quiclet-Sire, S. Z. Zard, J. Am. Chem. Soc. 1996, 118, 1209.
- [10] K. Mizuno, M. Ikeda, S. Toda, Y. Otsuji, J. Am. Chem. Soc. 1988, 110, 1288; D. P. Curran, W. Shen, J. C. Zhang, T. A. Heffner, J. Am. Chem. Soc. 1990, 112, 6738; G. E. Keck, C. P. Kordik, Tetrahedron Lett. 1993, 34, 6875; M. P. Sibi, J. G. Ji, J. Org. Chem. 1996, 61, 6090.
- [11] T. Toru, Y. Watanabe, M. Tsusaka, R. K. Gautam, K. Tazawa, M. Bakouetila, T. Yoneda, Y. Ueno, *Tetrahedron Lett.* 1992, 33, 4037.
- [12] B. Quiclet-Sire, S. Seguin, S. Z. Zard, Angew. Chem., Int. Ed. 1998, 37, 2864.
- [13] P. J. Wagner, J. H. Sedon, M. J. Lindstrom, J. Am. Chem. Soc. 1978, 100, 2579.
- [14] D. H. R. Barton, M. Ramesh, J. Am. Chem. Soc. 1990, 112, 891.
- [15] M. P. Sibi, H. Hasegawa, Org. Lett. 2002, 4, 3347.

Received May 23, 2006